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1. 

The determination of natural frequencies in the transverse vibration of rectangular plates
is a problem that has been extensively studied by several researchers. Not only the classical
boundary conditions (i.e., clamped, simply-supported or free) with the 21 distinct possible
combinations have been considered, but also the cases of elastically restrained edges have
been taken into account. On the other hand, among the methods used to study these
problems, the Ritz method has been extensively applied. When dealing with this method
it is necessary to select a sequence of functions called co-ordinate functions. An important
property arises concerning the boundary conditions. It is not necessary to subject the
co-ordinate functions to the natural boundary conditions which govern the problem under
study. It is sufficient that they satisfy only the geometric ones [1–3]. This property increases
the attractiveness of the method specially when dealing with problems for which such
satisfaction is difficult to achieve. For instance, the problem of free vibration of a
orthotropic rectangular plate with thickness varying in two directions and with edges
elastically restrained against rotation is considered. The boundary conditions which
correspond to edge x= a are given by

W(a, y, t)=0, r2
1W
1x

=−Dx (x, y)012W
1x2 + my

12W
1y2 1, x= a, (1, 2)

where r2 is the rotational spring constant along the edge, W is the plate deflection; and
Dx (x, y) is the flexural rigidity and is given by

Dx (x, y)=D(1)
x f 3(x)g3(y), (3)

where f(x) and g(x) describe the thickness variation.
It is very difficult to obtain coordinate functions which satisfy identically equation (2),

and it is convenient to replace it, for instance, by

r2 1W/1x=−D(2)
x (12W/1x2 + my 12W/1y2), x= a, (4)

where D(2)
x =D(1)

x f 3(a)g3(b). This procedure leads in most cases to highly satisfactory results.
But as stated by Dickinson [4], users of the Ritz method should not deliberately seek
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co-ordinate functions which satisfy more easily applied boundary conditions, specially
when using a several term approximating function. When dealing with one or two term
approximation function the procedure has been successfully used in various works [5–9].
It is the purpose of this note to demonstrate that when using this procedure in rectangular
plates of non-uniform thickness, with edges elastically restrained, the two commonly used
expressions that give the stored energy in the elastic supports are not equivalent and that
one of them leads to better results.

2.    

A rectangular orthotropic plate with thickness varying in two directions and with edges
elastically restrained against rotation is considered. The Rayleigh–Ritz method requires the
minimization of the Rayleigh quotient which for the fundamental frequency is given by

v2 =Umax /Tmax , (5)

where Umax =Up,max +Ur,max , Up,max is the maximum strain energy of the plate, Ur,max is the
maximum strain energy associated to the rotational restraints in the edges, Tmax is the
maximum kinetic energy of the plate. The maximum strain energy associated to the
rotational restraints in the edges is given by

Ur,max =
1
2 6r1 g

b

0

[Wx (0, y)]2 dy+ r2 g
b

0

[Wx (a, y)]2 dy+ r3 g
a

0

[Wx (x, 0)]2 dx

+ r4 g
a

0

[Wx (x, b)]2 dx7, (6)

where ri (i=1, 4) are the rotational spring constants along the corresponding edges. The
subscripts denote differentiation of W in respect of the subscripted variable; a and b are
side lengths of the plate in the x and y directions; respectively.

For instance, consider the edge which corresponds to boundary conditions (1) and (2).
The energy stored in the rotational springs of constant r2 can also be calculated by means
of the alternative expression [8, 9]

Ur2max =−
1
2 g

b

0

Dx (a, y)[Wxx (a, y)+ myWyy (a, y)]Wx (a, y) dy. (7)

When dealing with co-ordinate functions which satisfy all the boundary conditions the two
expressions are equivalent, but when dealing with the procedure of simplification of the
natural boundary condition stated above, the equivalence in general disappears. If one
replaces the term Wxx in equation (7) by the expression obtained from equation (4) one
gets (if the edge is supported, the term myWxx is equal zero):

Ur2max =−
1
2 g

b

0

Dx (a, y)[Wxx (a, y)+ myWyy (a, y)]Wx (a, y) dy

=−
1
2 g

b

0

Dx (a, y)$−Wx (a, y)
r2

D(2)
x %Wx (a, y) dy
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=
r2

2D(1)
x f 3(a)g3(b)

D(1)
x f 3(a) g

b

0

g3(y)W2
x (a, y) dy

=
r2

2g3(b) g
b

0

g3(y)W2
x (a, y) dy.

Thus one obtains the expression

Ur2,max =
r2

2g3(b) g
b

0

g3(y)[Wx (a, y)]2 dy. (8)

On the other hand, if one uses the original boundary condition (2) one gets

Ur2,max =
r2

2 g
b

0

[Wx (a, y)]2 dy. (9)

It has been proved that, when dealing with approximating functions which do not satisfy
all the boundary conditions identically, expression (7) and (9) are not equivalent. So the
repercussion on the numerical values of the natural frequencies, when using expression (8)
instead of (9) is considered.

The following approximating function is adopted;

W(x, y)=A1X1(x)Y1(y), (10)

T 1

Fundamental frequency coefficient V00 =zrh(1)/D(1) v00b3 of a rectangular isotropic plate of
variable thickness with edges 1, 3 and 4 rigidly clamped, and edge 2 elastically restrained
against rotation. (m=0·3, R1, R3 y R4 =a), ( f(x)=1+ c1(x/a), g(y)=1+ c2(y/b)),

D(1)
x /H(1)

xy =1, D(1)
y /H(1)

xy =1

b/a
ZXXXXXXXXXXXCXXXXXXXXXXXV

1 2
ZXXXXCXXXXV ZXXXXCXXXXV

c1 c2 R2 I II I II

c1 =−0, 2 c2 =0, 2 a 35·9599 35·9599 98·6029 98·6029
10 33·8466 34·0666 88·0972 89·4433
5 33·0945 33·3043 83·9730 85·2896
1 31·9810 32·0674 77·3580 77·9283
0 31·5633 31·5633 74·6803 74·6803

0, 2 0, 2 a 43·8737 43·8737 120·1757 120·1757
10 41·6823 42·1685 107·6322 110·6207
5 40·8605 41·3209 102·1277 105·0500
1 39·5936 39·7816 92·5667 93·8478
0 39·0998 39·0998 88·4122 88·4122

−0, 4 0, 2 a 32·6474 32·6474 90·6215 90·6215
10 30·5433 30·6600 80·9276 81·6311
5 29·7979 29·9098 77·2900 77·9790
1 28·6993 28·7457 71·6679 71·9654
0 28·2893 28·2893 69·4722 69·4722

(I) Values obtained with expression (7); (II) Values obtained with expression (9).
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T 2

Fundamental frequency V00 =zrh(1)/H(1)
xy v00b2 of a rectangular orthotropic plate with edges

1, 3 and 4 rigidly clamped, and edge 2 elastically restrained against rotation. (R1, R3 y
R4 =a), ( f(x)=1+ c1(x/a), g(y)=1+ c2(y/b)), D(1)

x /H(1)
xy =1, D(1)

y /H(1)
xy =0·5, my =0·3

b/a
ZXXXXXXXXXXXCXXXXXXXXXXXV

1 2
ZXXXXCXXXXV ZXXXXCXXXXV

c1 c2 R2 I II I II

c1 =−0, 2 c2 =0, 2 a 32·2813 32·2813 97·3216 97·3216
10 29·9612 30·2095 86·6787 88·0465
5 29·1301 29·3682 82·4911 83·8310
1 27·8939 27·9930 75·7598 76·3420
0 27·4285 27·4285 73·0289 73·0289

0, 2 0, 2 a 39·3741 39·3741 118·6069 118·6069
10 36·8619 37·4108 105·8587 108·8960
5 35·9080 36·4310 100·2490 103·2245
1 34·4228 34·6389 90·4758 91·7860
0 33·8388 33·8388 86·2148 86·2148

−0, 4 0, 2 a 29·4075 29·4075 89·5054 89·5054
10 27·1508 27·2821 79·7092 80·4233
5 26·3495 26·4761 76·0272 76·7275
1 25·1677 25·2207 70·3282 70·6313
0 24·7268 24·7268 68·0993 68·0993

(I) Values obtained with expression (7); (II) Values obtained with expression (9).

where

X1(x)= s
4

i=1

aixni, Y1(y)= s
4

i=1

biymi, (11)

and where a4 =1, b4 =1, ni = i, mi = i, i=1, 4. The coefficients ai and bi are obtained
from the boundary conditions. The co-ordinate functions in equation (10) satisfy
the original geometric boundary conditions and the approximate natural ones.
Minimization of the Rayleigh quotient (5) with respect to parameter Ai leads to the
frequency equation

AV2 +BV=0. (12)

3.    

Values of the fundamental frequency coefficient for distinct situations of vibrating plates
are shown in Tables 1 and 2. Table 1 contains results of the frequency coefficient
V00 =z(rh(1)/D(1))v00b2, for a rectangular isotropic plates of variable thickness with edges
1, 3 and 4 rigidly clamped and edge 2 elastically restrained against rotation. Table 2
contains results of the frequency coefficient V00 =z(rh(1)/H(1)

xy )v00b2, for a rectangular
orthotropic plate with edges 1, 3 and 4 rigidly clamped, and edge 2 elastically restrained
against rotation.
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4. 

Since it is not necessary to subject the co-ordinate functions to the natural boundary
conditions which govern the problem under study when dealing with the Rayleigh–Ritz
method it is possible to select co-ordinate functions which satisfy more easily the applied
boundary conditions. Nevertheless in this procedure when dealing with rectangular plates
of non-uniform thickness with edges elastically restrained against rotation, the two
commonly used expressions that give the energy stored in the elastic supports are not
equivalent. The Rayleigh–Ritz method was applied to the problem with a polynomial
expression as approximating function. A frequency equation was thus derived in a very
simple form. From the analysis of Tables 1 and 2 we can conclude that the use of
expression (7) yields better results.
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